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a b s t r a c t

We analyze the stability properties of an approximate algorithm for moving horizon estimation (MHE).
The strategy provides instantaneous state estimates and is thus suitable for large-scale feedback control.
In particular, we study the interplay between numerical approximation errors and the convergence of the
estimator error. In addition, we establish connections between the numerical properties of the Hessian of
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the MHE problem and traditional observability definitions. We demonstrate the developments through
a simulation case study.
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bservability
onlinear programming

. Introduction and basic notation

In this paper, we consider the problem of state estimation for
onlinear discrete-time systems of the form

t+1 = f (xt, ut)+ �t, t ≥ 0 (1a)

t = h(xt)+ �t, t ≥ 0, (1b)

here xt ∈X ⊆ �nx is the state of the system, ut ∈U ⊆ �nu are the
nputs, and yt ∈�ny are the measured outputs. Symbols �t ∈� ⊆

n� and �t ∈H ⊆ �n� denote bounded process and measurement
oise disturbances, respectively. The nonlinear mappings f : �nx ×
nu → nx and h : �nx → �ny represent the state and output models,

espectively.
Moving horizon estimation (MHE) strategies use a moving mea-

urement window,

T
t = [Iy

t
T
, Iu

t
T ] = [yt−N, . . . , yt−1, yt, ut−N, . . . , ut−1], t ≥ 0 (2)

o compute estimates x̂t of the true state xt . Here, N is the size of
he moving window, and It ∈�(N+1)ny+Nnu is the information vector
t time t. The MHE formulation used in this work has the following
orm:

N∑

in

z0
J(z0, x̄o

t−N, It) := �||z0 − x̄o
t−N ||2 +

k=0

||yt−N+k − h(zk)||2 (3a)

.t. zk+1 = f (zk, ut−N+k), k = 0, . . . , N − 1 (3b)

∗ Tel.: +1 630 252 3343.
E-mail address: vzavala@mcs.anl.gov.

098-1354/$ – see front matter © 2010 Published by Elsevier Ltd.
oi:10.1016/j.compchemeng.2010.02.033
zk ∈X, k = 0, . . . , N, (3c)

where the objective function (3a) incorporates the arrival cost and
the least-squares output errors along the horizon, (3b) is the state
model, and (3c) are the constraints. The optimal solution of this
nonlinear programming problem (NLP) provides the state trajec-
tory [zo

0, . . . , zo
N] from which we extract the initial state estimate

x̂o
t−N ← zo

0 and, implicitly, the current state x̂o
t ← zo

N . In the follow-
ing, we will use only the initial state estimate to refer to the solution
of the MHE problem. Accordingly, the estimator error at the current
time t is defined as eo

t−N := x̂o
t−N − xt−N . The optimal cost is denoted

as J(x̂o
t−N, x̄o

t−N, It). The symbol x̄o
t−N denotes the reference or prior

value of the initial state; � is a regularization parameter fixed by
design. At the next time step t + 1, once we have the new measure-
ments yt+1 and ut , we shift the measurement window forward:
IT
t+1 = [yt−N+1, . . . , yt, yt+1, ut−N+1, . . . , ut]. In addition, the refer-

ence initial state is updated as x̄o
t−N+1 ← f (x̂o

t−N, ut−N), and the next
MHE problem is solved to optimality. In the following, we will refer
to the above strategy as the optimal MHE algorithm.

One of the main problems associated with MHE is to establish
stability conditions for the estimation error. Different stability stud-
ies have been reported. In Moraal and Grizzle (1995), the authors
derive stability conditions for an estimator formulation assum-
ing that the output errors vanish at the solution. With this, the
estimator can be cast as a system of nonlinear equations, and sta-
bility properties can be established using fixed-point arguments.

The analysis in Michalska and Mayne (1995) establishes stability
by using Lyapunov arguments for an optimization-based estima-
tor that penalizes only least-squares output errors. This work was
extended in a comprehensive stability analysis presented in Rao,
Rawlings, and Mayne (2003). Here, the authors analyze the MHE

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:vzavala@mcs.anl.gov
dx.doi.org/10.1016/j.compchemeng.2010.02.033
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roblem as a forward dynamic programming approximation of the
ptimal batch estimator. Using this connection, they introduce the
otion of the arrival cost and establish stability conditions using
yapunov arguments. Their MHE strategy uses a more general least-
quares objective than (3a), including prior and noise covariance
atrices. This permits the authors to establish statistical proper-

ies of the estimator. In addition, the strategy computes estimates
f the process noise sequences �t and handles constraints. The sta-
ility analysis in Alessandri, Baglietto and Battistelli (2008) uses
he above MHE formulation (3). In this formulation, process noise
t is treated as a non-estimable disturbance. In addition, the arrival
ost uses a fixed prior diagonal matrix of the form � · Inx , � ≥ 0. As
xpected, the stability and statistical properties of this estimator
re less general compared to those in Rao et al. (2003). In particular,
his formulation is entirely deterministic. Consequently, the least-
quares objective is meaningless from a statistical point of view.
hese deterministic formulations have been studied in Michalska
nd Mayne (1995); Moraal and Grizzle (1995); Alamir (1999) and
hey permit a more transparent analysis of the impact of the sys-
em properties on the stability of the estimator from which much
nsight can be obtained. Motivated by this, we use this formulation
nd associated stability arguments here. Probabilistic formulations
nd stability analyzes are presented in detail in Jaswinski (1970).

A problem that arises in most practical MHE implementations
s that the NLP (3) is a computationally intensive optimization
roblem. For instance, when MHE is used for feedback control, the
olution time of the NLP introduces a nonnegligible feedback delay
hat deteriorates closed-loop performance Findeisen and Allgöwer
2004). In this work, we consider an approximate MHE formulation
ith minimal on-line computational effort and analyze its stabil-

ty properties. The strategy is a simplification of the advanced-step
HE estimator presented in Zavala, Laird, and Biegler (2008) in
hich nearly instantaneous approximate estimates are constructed

y using reference solutions computed in background (i.e., between
ampling times). We analyze the impact of numerical approxima-
ion errors on the stability properties of the algorithm and contrast
hese with those of the optimal MHE algorithm. In addition, we
stablish connections between the observability properties of the
onlinear system and the properties of the MHE problem. We illus-
rate the developments using a simulation case study.

The paper is structured as follows. In Section 2 we derive the
pproximate MHE algorithm. In Section 3 we establish system and
bservability properties. In Section 4 we derive stability conditions
or the optimal and approximate MHE estimators. In Section 5 we
resent the numerical study. We close the paper with concluding
emarks and directions of future work.

. Approximate MHE algorithm

To construct the approximate MHE algorithm, we recognize
hat, at time step t − 1, we can use the current state estimate

ˆ�
t−1 and input ut−1 to predict the future state and associate
easurement x̄�

t = f (x̂�
t−1, ut−1) and ȳt = h(x̄�

t ), respectively. With

hese, we can use the predicted information vector Īt = [Īy
t , Iu

t ]
T =

yt−N, . . . , yt−1, ȳt, ut−N, . . . , ut−1]T to solve, between sampling
imes, the background MHE problem:

in
z0

J(z0, x̄�
t−N, Īt) := �||z0 − x̄�

t−N ||2 + ||ȳt − h(zN)||2

+
N−1∑
||y − h(z )||2 (4a)
k=0

t−N+k k

.t. zk+1 = f (zk, ut−N+k), k = 0, . . . , N − 1 (4b)

k ∈X, k = 0, . . . , N. (4c)
ngineering 34 (2010) 1662–1670 1663

Using the solution of this problem x̂o
t−N(Īt), we construct an on-line

correction formula of the form

x̂�
t−N(It) = x̂o

t−N(Īt)+ Ko
t

(
It − Īt

)
. (5)

With this, we can compute a fast on-line estimate as soon as
the true measurement yt becomes available. Here, Ko

t is a gain
matrix that can be constructed by using NLP sensitivity and the
Karush–Kuhn–Tucker matrix of the MHE problem evaluated at the
solution of the background MHE problem (see the next section). In
Zavala et al. (2008), it has been shown that this matrix is a Kalman-
like gain matrix. The approximate state generated by the correction
step at time t is denoted as x̂�

t−N(It). This has an associated cost
J(x̂�

t−N(It), x̄�
t−N, It) and error,

�t := J(x̂�
t−N(It), x̄�

t−N, It)− J(x̂o
t−N(It), x̄o

t−N, It). (6)

The current estimation error is e�
t−N := x̂�

t−N − xt−N . At the next time
step, the reference state is updated as x̄�

t−N+1 ← f (x̂�
t−N, ut−N). In the

following, we will refer to this algorithm as the approximate MHE
algorithm.

The approximate MHE strategy can significantly reduce the on-
line solution time because the expensive computational tasks are
performed between sampling times while the correction step (5)
can be computed almost instantaneously (Findeisen et al., 2002;
Zavala et al., 2008). The sensitivity computation is at least two
orders of magnitude faster than the full NLP solution in Zavala et
al. (2008); Zavala and Biegler (2008, 2009). However, a problem
that arises in approximate MHE schemes is that the correction step
introduces a numerical approximation error �t that is propagated
at each time step through the reference initial state. In the next
sections, we investigate under which conditions we can guarantee
stability even in the presence of these numerical errors. In addition,
we analyze the interplay between the system properties, numeri-
cal approximation errors and the dynamics of the estimation error
e�

t .

3. Observability and sensitivity properties

To start the discussion, we use the following assumptions and
definitions.

Assumption 1. (System properties)
• The sets �, H and U are compact.
• Any initial condition x0 and control sequence ut, t ≥ 0 are such

that, for any possible disturbance sequences �t, t ≥ 0, and �t, t ≥
0, the system trajectory xt, t ≥ 0, lies in a closed and compact set
X.
• The functions f and h are C2 functions with respect to both argu-

ments x∈X and u∈U. The associated Lipschitz constants are kf

and kh, respectively.

Definition 1. A continuous function ϕ : � → � is a K function if
ϕ(0) = 0, ϕ(s) > 0,∀s > 0 and it is strictly increasing.

For the sake of simplicity, we will consider a representation of
the MHE problem (4) of the form

min
z0

J(z0, x̄t−N, It) := �||z0 − x̄t−N ||2 + ||Iy
t − F(z0, Iu

t )||2. (7)

The nonlinear mapping F : �nx ×�Nnu → �(N+1)ny has the structure

u

⎡
⎢⎢

h(z0)
h ◦ f ut−N (z0)

⎤
⎥⎥
F(z0, It ) := ⎣ ...

h ◦ f ut−1 ◦ . . . ◦ f ut−N (z0)

⎦ . (8)

To simplify the analysis, we will also make the following assump-
tion:
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of the solution to perturbations on the problem data I around a
reference solution zo

0(Ī) (Basu and Bresler, 2000). To explore this,
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ssumption 2. (Constraints) The constraints zk ∈X, k = 0, . . . , N
n (4) can be satisfied implicitly, and the optimal estimates never
ie at the boundary of the set X.

Later we will discuss extensions needed in order to relax this
ssumption. We emphasize that formulation (7) is only conceptual.
ecause of computational efficiency reasons, problem (4) should be
olved in practice. We now impose requirements on the observabil-
ty properties of the nonlinear discrete-time system (1) and relate
hem to the properties of (7).

efinition 2. (Observability Definition) (Alamir, 1999; Alessandri
t al., 2008; Rao et al., 2008). The system (1) is said to be observable
n N + 1 steps if there exists a K-function ϕ(·) such that

|F(z0, Iu)− F(z′0, Iu)||2 ≥ ϕ(||z0 − z′0||2), ∀z0, z′0 ∈X,∀u∈U. (9)

ssumption 3. (Observability assumption)
System (1) is observable in N + 1 steps ∀z0 ∈X and ∀u∈U.

This assumption implies that ∀ z0, z′0 ∈X and ∀u∈U, ∃ ı > 0 such
hat

|F(z′0, Iu)− F(z0, Iu)||2 ≥ ı||z′0 − z0||2. (10)

n other words, Assumption 3 guarantees that different initial states
ive rise to distinguishable output trajectories. This also implies
hat the system

y = F(z0, Iu), ∀z0 ∈X, ∀u, ∈U (11)

lways has a unique solution. An issue related to Definition 2 is
hat it can be difficult to verify and quantify in practice (e.g., for
arge-scale nonlinear systems and in the presence of constraints).

otivated by this, we seek to relate the observability properties of
he system to the numerical properties of the NLP problem because
his can be verified automatically using a NLP solver (Zavala &
iegler, 2008). Note that uniqueness of (11) is equivalent to guar-
nteeing that the unregularized (� = 0) MHE problem (7) has a
nique solution. In optimization literature it is said that the NLP
as a strict isolated minimizer. A strict isolated minimizer satis-
es the so-called strong second-order sufficient conditions (SSOC),
hich we present here in the context of problem (7).

emma 1. (SSOC Conditions) (Nocedal & Wright, 1999). Let
(z0, x̄, I) be a C2 function w.r.t. z0 in a neighborhood of zo

0. Under
ssumption 2, if ϕo

z := ∇zJ(zo
0, x̄, I) = 0 and wTHow > 0 with Ho :=

z,zJ(zo
0, x̄, I) hold ∀w, then zo

0 is a strict isolated minimizer.

The requirement of J(z0, x̄, I) being a C2 function follows from
ssumption 1. The above lemma can be modified to account explic-

tly for active constraints at the solution. In such a case, the vector w
eeds to be restricted to the subspace of the variables at the bound-
ry ofX. The analysis of this case would require a detailed structural
nalysis of the mapping F(·, ·) and of the set X. Therefore, this anal-
sis is omitted here. A detailed SSOC analysis in the context of MHE
an be found in Chapters 3 and 6 in Zavala (2008).

The gradient and the Hessian matrix evaluated at the solution
o
0 are given by

zJ(zo
0, x̄, I) = 2�(zo

0 − x̄)− 2
∂F

∂z0

T

(Iy − F(zo
0, Iu)), (12a)

o ∂F T ∂F ∂2F y o u

z,zJ(z0, x̄, I) = 2�Inx + 2

∂z0 ∂z0
− 2

∂z0
2

(I − F(z0, I )), (12b)

here (∂F/∂z0) and (∂F/∂z0)T (∂F/∂z0) are the so-called observ-
bility and Grammian matrices, respectively. If we apply a
econd-order Taylor series expansion of the objective function
Fig. 1. Sketch of curvature of cost function for observable (	min > 0) and unobserv-
able system (	min = 0).

around zo
0 satisfying SSOC, we have

J(z′0, x̄, I)− J(zo
0, x̄, I) = 1

2
(z′0 − zo

0)THo(z′0 − zo
0)

≥ 1
2

	min(Ho)||z′0 − zo
0||2,

(13)

where 	min(Ho) > 0 if SSOC holds (see Fig. 1). From (12a) it is not
difficult to see that, for the special case in which � = 0 and the
residuals Iy − F(zo

0, Iu) vanish at the solution, solving problem (7)
is equivalent to solving (11). The estimation strategy presented in
Moraal and Grizzle (1995) is based on the solution of this algebraic
system. Note also that, in this special case, expression (13) reduces
to (10) with ı = (1/2)	min(Ho). Moreover, the Hessian reduces to
Ho = 2(∂F/∂z0)T (∂F/∂z0). Therefore, SSOC implies that the observ-
ability matrix is full rank and that the Grammian is positive definite.
This was also noticed in Michalska and Mayne (1995); Muske and
Edgar (1997); Keerthi and Gilbert (1988) in the context of linear
systems. From this sequence of implications it is clear that the sat-
isfaction of SSOC is a valid and general observability qualification.
Observability properties have been traditionally analyzed a priori
by using, for instance, a singular-value-decomposition (SVD) of the
Grammian matrix at nominal state and control values. In nonlinear
systems, however, it is well known that the system properties can
change drastically with the nominal values. In addition, the numer-
ical properties of the Grammian matrix can be related to Definition
2 only if the system model and output mappings are linear. Finally,
computing the derivatives of the mapping F(·, ·) and performing the
SVD decomposition can become expensive or cumbersome in large
systems. The SSOC property, on the other hand, can be checked for
complex MHE problems through modern NLP solvers and modeling
capabilities (Zavala, 2008). This check can be performed a posteriori
by solving the estimation problem. This can be useful, for instance,
if the available measurements are noisy or if constraints are
present.

Remark: To check for the observability qualification through
SSOC we require the regularization term to be zero (� = 0). If the
system is already observable, in the sense of Definition 2, set-
ting � > 0 will introduce a bias in the solution (i.e., this acts as a
Tikhonov regularization) (Blank, 2007). If the system is not observ-
able, setting � to a sufficient large value adds artificial curvature
to the cost function, inducing a unique (but biased) solution. This
regularization term can also be added internally by some NLP algo-
rithms (e.g., a la Levenberg–Marquardt) (Nocedal and Wright, 1999)
as the search proceeds.

The satisfaction of SSOC also has implications on the sensitivity
we use the following well-known result, adapted to the context of
problem (7).

Theorem 1. (NLP sensitivity) (Fiacco, 1976, 1983). If a nominal
solution zo

0(Ī) satisfies SSOC, then the following hold:
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ig. 2. Sketch of path of minimizers zo
0(It ) and presence of singular point (loss of

bservability).

For I in a neighborhood of Ī there exists a unique, continuous and
differentiable vector function zo

0(I) that is a strict isolated minimizer
satisfying SSOC.
The optimal cost is locally Lipschitz in a neighborhood of Ī.

From these results, we can apply the implicit function theorem
o (12a) at zo

0(Ī) to obtain a correction formula (5) with

o
t =

∂zo
0

∂I

∣∣∣∣
zo
0

(Ī),x̄,Ī

= Ho−1ϕo
I (14)

nd ϕo
I := −∇z,I J(zo

0(Ī), x̄, Ī). The sensitivity matrix can be bounded
s∣∣∣∣∣ ∂zo

0

∂I

∣∣∣∣
zo
0

(Ī),x̄,Ī

∣∣∣∣∣
∣∣∣∣∣ ≤ 1

	min(Ho)
||ϕo

I ||. (15)

f the solution satisfies SSOC (system is observable), the solution is
umerically stable to perturbations on I. This is reflected by a small
ensitivity matrix. If, on the other hand, the Hessian becomes sin-
ular (system becomes unobservable), the sensitivity matrix grows
nboundedly. This singularity represents a bifurcation point in the
o
0(I)− I space at which solutions of the MHE problem move from a
et of minimizers to a set of saddle points or maximizers (Guddat,
uerra Vazquez, & Jongen, 1990). This is sketched in Fig. 2.

Using the sensitivity results, we can now establish a rigorous
ound on the error generated by the correction step of the approx-

mate MHE algorithm.

emma 2. (Numerical Error Bound) Assume zo
0(Īt) is a solution of (7)

atisfying SSOC. Then, for It in the neighborhood of Īt , ∃ kx, kJ, �t ≥ 0,
uch that

|x̂�
t−N(It)− x̂o

t−N(It)|| ≤ kx||It − Īt ||2 (16a)

t = J(x̂�
t−N(It), x̄�

t−N, It)− J(x̂o
t−N(It), x̄�

t−N, It) ≤ kJ ||It − Īt ||2. (16b)

roof. We note that x̂o
t−N(It) = zo

0(It). Bound (16a) follows from
aylor’s theorem (Dennis & Schnabel, 1996; Zavala & Biegler, 2009),
hile (16b) follows from (16a) and the Lipschitz continuity of

he cost, as stated in Theorem 1. The error �t is always nonneg-
tive because, if x̂o

t−N(It) satisfies SSOC, then J(x̂o
t−N(It), x̄�

t−N, It) ≤
(x̂�

t−N(It), x̄�
t−N, It). �

. Stability properties

We now establish stability conditions for the estimation error
f the approximate MHE algorithm. We define uniform bounds for
he disturbances, the initial estimation error eo

0 := x̂o
0 − x0 at t = 0,
nd for the constant ı in the observability condition (10):

� :=max
�t ∈�
||�t ||, r� := max

�t ∈H
||�t ||,

x := max
x0,x̂o

0
∈X
||x̂o

0 − x0||, ımin :=min
ıt>0
||ıt ||. (17)
ngineering 34 (2010) 1662–1670 1665

To establish a reference for the stability conditions of the approx-
imate algorithm, we revisit the stability results of Alessandri et al.
(2008) for the optimal MHE algorithm.

Theorem 2. (Stability of Optimal MHE Algorithm) If Assumptions
1 and 3hold, then the optimal cost J(x̂o

t−N, x̄o
t−N, Īt) obtained from the

solution of (3) can be bounded as

J(x̂o
t−N, x̄o

t−N, It) ≤ �||xt−N − x̄o
t−N ||2 + c2

J(x̂o
t−N, x̄o

t−N, It) ≥ 1
2

�||eo
t−N ||2+

1
2

ϕ(||eo
t−N ||2)−�||xt−N − x̄o

t−N ||2−c2.

Furthermore, the estimator error eo
t−N can be bounded as

||eo
t−N ||2 ≤ 
t−N,

where 
t−N is generated by the sequence


0 = ˇ0 (18a)


t = ˛
t−1 + ˇ (18b)

˛ = 4
�+ ımin

(
2�k2

f

)
(18c)

ˇ0 =
4

�+ ımin

(
2�d2

x + c2
)

(18d)

ˇ = 4
�+ ımin

(
2�r2

� + c2
)

. (18e)

If � is selected such that ˛ < 1, then as t →∞, we have ||eo∞||2 →
(ˇ/1− ˛).

Proof. The complete proof of this theorem has been presented in
Alessandri et al. (2008). A summary is given in Appendix A. �

Theorem 2 does not make use of Assumption 2. The theorem
states that, for a suitable choice of �, the estimation error sequence
is convergent. Condition ˛ < 1 becomes easier to satisfy as ımin
increases (better observability). For ımin = 0 this condition can be
satisfied only if 8k2

f
< 1 (� cannot be used to control the error). The

error diverges for ımin ≤ −�. This divergence illustrates the role
of the regularization or arrival cost term in the cost function. The
stability conditions are easier to satisfy with smaller kf (the more
contractive the system). We should emphasize that, because of
the nonlinearity of the system, the stability results should be used
to analyze trends and effects of the system properties and of the
parameters � and N, rather than to guide design decisions.

The previous stability results require the MHE problem to be
solved on-line to optimality. We now establish stability conditions
for the approximate MHE algorithm. In particular, we analyze the
propagation of �t through the estimator error sequence.

Theorem 3. (Stability of approximate MHE algorithm) If
Assumptions 1 and 3, and the bounds of Lemma 2 hold, then
the approximate cost J(x̂�

t−N, x̄�
t−N, Īt) can be bounded as

J(x̂�
t−N, x̄�

t−N, It) ≤ �||xt−N − x̄�
t−N ||2 + c2 + �t

J(x̂�
t−N, x̄�

t−N, It) ≥ 1
2

�||e�
t−N ||2+

1
2

ϕ(||e�
t−N ||2)−�||xt−N − x̄�

t−N ||2−c2.

Furthermore, the estimator error e�
t−N can be bounded as

||e�
t−N ||

2 ≤ 
̄t−N,

where 
̄t−N is generated by the sequence

¯ ¯

0 = ˇ0 (19a)


̄t = ¯̨ 
̄t−1 + ¯̌ (19b)

¯̌ 0 = ˇ0 +
4

�+ ımin

(
�2r2

� + �3r2
�

)
(19c)
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¯ = ˇ + 4
�+ ımin

(
�2r2

� + �3r2
�

)
(19d)

¯ = ˛+ 4�1

�+ ımin
(19e)

ith �1, �2 and �3 defined in Appendix C. If � is selected such that
¯ < 1, then as t →∞, we have ||e�∞||2 → ( ¯̌ /1− ¯̨ ).

roof. See Appendix B. �

orollary 1. (Asymptotic Behavior in Absence of Disturbances) If
ssumptions 1 and 3, the bounds of Lemma 2, and r� = r� = 0 hold,

hen ||eo
t−N ||2 and ||e�

t−N ||2 converge exponentially to zero as

||eo
t−N ||2 ≤ ˛t−Nˇ0

||e�
t−N ||2 ≤

(
˛+ 4�1

�+ ımin

)t−N

ˇ0.

roof. In the absence of noise disturbances, we have that ¯̌ = ˇ =
and ¯̌ 0 = ˇ0. The result follows. �

From Corollary 1 we see that the rate of convergence of the
pproximate estimator is 4�1/(�+ ımin) slower than that of the
ptimal counterpart. An unexpected result from this analysis is the
act that, even in the absence of noise disturbances, the rate of con-
ergence of the approximate MHE algorithm is not the same as that
f the optimal counterpart. The reason is that the estimation error
|e�

t−N ||2 is always propagated to the predicted output ȳt+1 gener-
ting an error �t+1 at the next step. For instance, if we have a large
nitial estimation error (bad initial reference state x̄0), then ||e�

0||2
ill be large and will tend to give larger approximation errors dur-

ng the first time steps. On the other hand, this also implies that, as
oon as ||e�

t−N ||2 = 0, the predicted and true output measurements

oincide and �t+1 = 0 for all subsequent t.

In the presence of noise disturbances, from (18) and (21) it is
lear that additional errors are introduced by the correction step.
rom Appendix C we see that the additional errors are always mul-
iplied by kJ . That is, as expected, the stability properties of the

Fig. 3. Effect of observability on convergence of optimal MHE estimator in the absenc
ngineering 34 (2010) 1662–1670

estimators coincide if �t = 0. This happens, for instance, if the model
and output mappings are linear, since the MHE problem reduces to
a quadratic programming problem and the correction step is exact.

The bounds of Lemma 2 are related to the observability prop-
erties of the system and on the numerical stability properties of
the MHE problem. Therefore, these bounds are problem depen-
dent. However, from (15) and (5) it is clear that �t tends to zero
as 	min(Ho) shifts away from zero. This means that, as the numeri-
cal stability properties of the problem improve, the correction step
(5) will not generate appreciable changes in the state estimate. This
desired effect can be influenced by increasing the horizon length or
by increasing the regularization term �, since this tends to increase
the curvature of the solution, which is reflected in 	min(Ho). This
behavior can also be appreciated from term 4�1/(�+ ımin), which
tends to decrease as ımin and � increase.

5. Numerical case studies

In this section, we illustrate the effect of the system properties
and of numerical errors on the performance of the optimal and
approximate MHE estimators. In addition, we analyze some of the
the stability conditions developed in the previous sections.

5.1. Effect of system properties

We consider an MHE scenario of the system:

dx1

d�
= x2(�) (20a)

dx2

d�
= x1(�)+ x2(�)+ (1− x1(�)2)x3(�)+ u(�) (20b)
dx3

d�
= −x1(�)+ x3(�). (20c)

Here, the only measured state is assumed to be x1. An analysis of the
observability matrix of this system reveals that it becomes unob-
servable for x1 = 1 and x1 = −1 (Boehm, Findeisen, & Allgoewer,

e of disturbances and � = 0. The system becomes unobservable when x1 = −1.
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Fig. 4. Effect of observability on convergence of optima

008). The continuous-time model is transformed into a discrete-
ime form through an implicit Euler discretization scheme. We use

¯0 = [1 1 1] as the initial state estimate and an estimation horizon
= 5.
We run the optimal MHE estimator with noise-free measure-

ents generated artificially and with no regularization (� = 0). In
ig. 3 we illustrate the convergence of the estimator when the sys-
em is observable and unobservable. In the top graph we present
he convergence to an observable state (the measured one) x1. The
stimator quickly converges to the true state. In the middle graph
e see that the estimator converges to the true state x3 when the

stimator is observable. Around time step 80, however, x1 = −1,
nd the estimate of x3 diverges. In the bottom graph we show the
inimum eigenvalue of the Hessian matrix extracted from the NLP

olver. Notice the small magnitude of the eigenvalue (O(10−5)) even
n the first time steps when the system is observable. The system is

eakly observable. At time step 80 there is a sudden jump of five
rders of magnitude of the eigenvalue to O(10−10). The NLP solver
s able to detect the lost observability.

In Fig. 4 we illustrate the convergence of the estimator under

he same conditions but with a regularization of � = 0.01. Note
hat the estimator converges in the observable range more slowly.
n addition, it diverges when x1 gets close to −1. This simulation
einforces the analysis of Theorem 2 where we see that, when the
ystem becomes unobservable (ımin, 	min → 0), the regularization

Fig. 5. Convergence of approximate and optimal M
estimator in the absence of disturbances and � = 0.1.

parameter � cannot be used to control the estimator error. This
result is counterintuitive because it implies that, if the system is already
observable and noise-free, the arrival cost degrades the convergence
of the estimator error. Nevertheless, we emphasize that, if one is
interested in quantifying the uncertainty of the state estimates,
then introducing the arrival cost with covariance information (as
in the formulations used in Rao et al. (2003); Zavala et al. (2008))
is relevant because it summarizes information not included in the
estimation window. As expected, we have also seen that when the
system is observable, the regularization term helps to counteract
the effects of noise.

5.2. Effect of numerical errors

We now consider a MHE scenario on the nonlinear continuous
stirred tank reactor (Hicks and Ray, 1971):

dx1

d�
= x1(�)− 1


+ k0 · x1(�) · exp

[ −Ea

x2(�)

]
(21a)

dx2 =
x2(�)− x2f − k0 · x1(�) · exp

[ −Ea
]

d�  x2(�)

+˛ · u(�) · (x2(�)− x2cw ). (21b)

The system involves two states x = [x1, x2] corresponding to the
concentration and temperature, respectively, and one control u

HE estimator in the absence of disturbances.
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Fig. 6. Convergence of approximate and optim

orresponding to the cooling water flowrate. The continuous-

ime model is transformed into a discrete-time form through an
mplicit Euler discretization scheme. The temperature is used as the

easured output (yt = x2t ) to infer the concentration. The model
arameters are x2cw = 0.38, x2f

= 0.395, Ea = 5, ˛ = 1.95× 104,

Fig. 7. Effect of noise on approximation errors (top). Effect of h
HE estimator in the presence of disturbances.

and k0 = 300. We use batch data generated from a simulated

closed-loop feedback control scenario. The simulated states are
corrupted with different levels of Gaussian noise with variance
�2 measured as a percentage relative to the nominal temperature
value. The corrupted temperature values are used to study the effect

orizon length and regularization on 	min(Ho) (bottom).
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f noise disturbances �t . We use x̄0 = [0.15 0.15] as the initial ref-
rence state, a regularization penalty � = 30, and an estimation
orizon N = 5.

In Fig. 5 we compare the performance of both the optimal
nd approximate MHE algorithms in the absence of disturbances
�2 = 0%). In the top graph, we present the approximate cost J�

t :=
(x̂�

t−N, x̄�
t−N, It) and its corresponding upper and lower bounds.

hese bounds correspond to the right-hand sides of Eqs. (31) and
32), respectively. The estimator recovers from the bad initial ref-
rence (bound dx in Theorem 3), and the estimator error converges
o the origin in about 30 time steps (reflected as a zero cost). In
he middle graph, we contrast the trajectories of the inferred state
or the optimal and approximate estimators, while in the bottom
raph we contrast the predicted ȳt and true measurements yt . These
enerate the perturbation ||yt − ȳt ||2 in (16) for the approximate
stimator. As can be seen, even if the initial prior is far away from
he true state, both estimators exhibit the same performance. The
ontraction of the estimation errors is quite fast, implying that con-
tants ˛, ¯̨ are quite small. This also implies that the approximation
rrors �t are negligible.

In Fig. 6 we compare the performance of the estimators in the
resence of noise disturbances with � = 2.5%. In the top graph,
e present the approximate cost and corresponding upper and

ower bounds in which we can see that the estimator converges
o a neighborhood of the origin. In the middle graph, we see that
he trajectories of the inferred state for both estimators are still
ery close to each other. In the bottom graph, we present the rela-
ively large perturbations ||yt − ȳt ||2 reflected by larger deviations
etween the predicted and true temperatures compared to those
bserved in the noise-free scenario.

In the top graph of Fig. 7 we present the total sum of the approx-
mation errors �sum =

∑
t�t over the whole horizon for scenarios

ith increasing levels of noise �2 = [0%, 2.5%, 5%, 7.5%, 10%]. As
xpected, the approximation errors tend to increase with the
oise level. Nevertheless, their overall magnitude remains small
(10−5). This is mainly due to the strong observability properties
f the system. To illustrate this, in the bottom graph we present
rends of 	min(Ho) for MHE problems with different horizons and
wo different regularization terms. As can be seen, for the � = 0
ase, the system is strongly observable even for very short hori-
ons (	min(Ho) > 0). This value also increases with the horizon
ength, as expected. Note also that, by setting � = 1, the eigenval-
es are shifted away from zero. From bound (15), it can be seen
hat this decreases the sensitivity of the state estimates and thus
educe the approximation errors as it is observed in the simulation
esults.

. Conclusions and future work

In this work, we have studied the stability properties of an
pproximate algorithm for moving horizon estimation (MHE). The
lgorithm is particularly suitable for large-scale systems because
t can significantly reduce the on-line solution time by construct-
ng fast approximations using reference solutions computed in
etween sampling times. The stability analysis reveals that the esti-
ation error converges at a similar rate compared to that of an

ptimal MHE counterpart. In addition, the observability properties
f the nonlinear system have a strong impact on the convergence of
he estimator error. This insight has been used to derive guidelines
ble to reduce the impact of numerical errors.
As part of future work, we are interested in considering the more
eneral MHE formulation presented in Rao et al. (2003). We recog-
ize that, for strong disturbances or ill-conditioned problems, the
orrected state x̂�

t (It) in (5) can become a worse approximation than
he uncorrected state xo(Īt) if error bounds of Lemma 2 do not hold.
ngineering 34 (2010) 1662–1670 1669

We are thus interested in developing strategies able to preserve
stability.
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Appendix A. Proof of Theorem 2

To construct the estimator error sequence eo
t−N , we obtain lower

and upper bounds for the cost function J(x̂o
t−N, x̄o

t−N, It). An upper
bound can be obtained by noticing that, since x̂o

t−N is optimal, it
gives a smaller cost than the true state xt−N (because of the regu-
larization term). With this,

J(x̂o
t−N, x̄o

t−N, It) ≤ J(xt−N, x̄o
t−N, It)

= �||xt−N − x̄o
t−N || + ||I

y
t − F(xt−N, Iu

t )||2.
(22)

As shown in Eq. (30) in Alessandri et al. (2008), the second term
on the right-hand side can be bounded by using the disturbance
bounds r� and r�. These terms can be lumped into a constant c2 to
give

J(x̂o
t−N, x̄o

t−N, It) ≤ �||xt−N − x̄o
t−N || + c2. (23)

To construct a lower bound, we start from the optimal cost,

J(x̂o
t−N, x̄o

t−N, It) = �||x̂o
t−N − x̄o

t−N || + ||Iy
t − F(x̂o

t−N, Iu
t )||2. (24)

The second term can be bounded from

||F(xt−N , Iu
t )− F(x̂o

t−N
, Iu

t )||2 = ||
(

Iy
t − F(x̂o

t−N
, Iu

t )
)
+
(

F(xt−N , Iu
t )− Iy

t

)
||2

≤ 2||Iy
t − F(x̂o

t−N
, Iu

t )||2 + 2c2
(25)

so that

||Iy
t − F(x̂o

t−N, Iu
t )||2 ≥ 1

2
||F(xt−N, Iu

t )− F(x̂o
t−N, Iu

t )||2 − c2

≥ 1
2

ϕ(||xt−N − x̂o
t−N ||2)− c2.

(26)

The last inequality arises from the Observability Assumption 3. We
now bound the first term in (24) from

�||xt−N − x̂o
t−N || ≤ 2�||xt−N − x̄o

t−N || + 2�||x̂o
t−N − x̄o

t−N ||
�||x̂o

t−N − x̄o
t−N || ≥

1
2

�||xt−N − x̂o
t−N || −�||xt−N − x̄o

t−N ||.
(27)

Merging terms and using (10) with ımin, we obtain

J(x̂o
t−N , x̄o

t−N , It ) ≥ 1
2

�||eo
t−N || +

1
2

ımin||eo
t−N ||2 −�||xt−N − x̄o

t−N || − c2. (28)

Combining bounds (24) and (28) yields

1
2

�||eo
t−N || +

1
2

ımin||eo
t−N ||2 ≤ 2�||xt−N − x̄o

t−N || + 2c2

||eo
t−N ||2 ≤

4�

�+ ımin
||xt−N − x̄o

t−N ||2 +
4

�+ ımin
c2.

(29)

The proof is completed by relating the current estimation error to
the previous estimation error as

||xt−N − x̄o
t−N
||2 = ||f (xt−N−1, ut−N−1)+ �t−N−1 − f (x̂o

t−N−1, ut−N−1)||2
≤ 2k2

f
||xt−N−1 − x̂o

t−N−1||2 + 2||�t−N−1||2
= 2k2

f
||eo

t−N−1||2 + 2||�t−N−1||2.
(30)

The convergent sequence follows from (29) and (30). The proof is
complete.

Appendix B. Proof of Theorem 3
A lower bound for the approximate cost J(x̂�
t−N, x̄�

t−N, It) can be
obtained as in Appendix A to give

J(x̂�
t−N , x̄�

t−N , It ) ≥ 1
2

�||e�
t−N ||2 +

1
2

ımin(||e�
t−N ||2)−�||xt−N − x̄�

t−N ||2 − c2. (31)
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s an upper bound we consider

(x̂�
t−N, x̄�

t−N, It) = J(x̂o
t−N, x̄�

t−N, It)+ �t. (32)

ith this,

(x̂�
t−N, x̄�

t−N, It) ≤ �||xt−N − x̄�
t−N ||2 + c2 + �t. (33)

ombining the upper and lower bounds, we have

�||xt−N−x̄�
t−N
||2+c2+�t ≥ 1

2
�||e�

t−N ||2+
1
2

ımin(||e�
t−N ||2)−�||xt−N − x̄�

t−N ||2 − c2

||e�
t−N
||2 ≤ 4�

�+ ımin
||xt−N − x̄�

t−N ||2 +
4

�+ ımin
c2 + 2

�+ ımin
�t .

(34)

he first term on the right-hand side is bounded as

|xt−N − x̄�
t−N ||2 ≤ 2k2

f ||e�
t−N−1|| + 2r2

� . (35)

o bound �t , we first note that the only element changing from Īt
s the predicted measurement ȳt which is computed from extrap-
lation of the previous state estimate x̂�

t−1. With this, (16) reduces
o

t ≤ kJ ||ȳt − yt ||2. (36)

he error between measurements is bounded as

||ȳt − yt ||2 = ||h(f (x̂�
t−1, ut−1))− h(f (xt−1, ut−1)+ �t−1)+ �t−1||2

≤ 2k2
h

(
2k2

f
||e�

t−1||2 + 2||�t−1||
)
+ 2||�t−1||2

≤ 4k2
h
k2

f
||e�

t−1||2 + 4k2
h
r2

�
+ 2r2

� ,

(37)

here e�
t−1 is the estimation error of the state x̂�

t−1 obtained from
ropagation of the initial state x̂�

t−N−1. As a consequence, this error
an be related to the the desired estimation error e�

t−N−1 through
ackpropagation:

||e�
t−1||2 = ||x̂�

t−1 − xt−1||2
= ||f (x̂�

t−2, ut−2)− f (xt−2, ut−2)− �t−2||2
≤ 2k2

f
||e�

t−2||2 + 2||�t−2||2
≤ 2k2

f
||f (x̂�

t−3, ut−3)− f (xt−3, ut−3)+ �t−3||2 + 2||�t−2||2
.
.
.

(38)

||e�
t−1||2 ≤ (2k2

f
)
N ||e�

t−N−1||2 +
N−1∑
k=0

(2k2
f )

k
r2
�

= (2k2
f
)
N ||e�

t−N−1||2 +
(2k2

f
)
N − 1

2k2
f
− 1

r2
� .

(39)

ith this,

||ȳt − yt ||2 ≤ 4k2
h
k2

f
||e�

t−1||2 + 4k2
h
r2

�
+ 2r2

�

≤ 4k2
h
k2

f

(
(2k2

f
)
N ||e�

t−N−1||2 +
(2k2

f
)
N − 1

2k2
f
− 1

r2
�

)
+ 4k2

h
r2

�
+ 2r2

�

≤ 2k2
h
(2k2

f
)
N+1||e�

t−N−1||2 + 2k2
h

(
2+

(2k2
f
)
N+1 − 1

2k2
f
− 1

)
r2

�
+ 2r2

� .

(40)

e have thus obtained the required bound for �t:

t ≤ 2�1||e�
t−N−1||2 + 2�2r2

� + 2�3r2
�. (41)

ubstituting (41) and (35) in (34), we have

||e�
t−N ||2 ≤ 4�

�+ ımin

(
2k2

f ||e�
t−N−1||2 + 2r2

�

)
+ 4

�+ ımin
c2

+ 2
�+ ımin

(
2�1||e�

t−N−1||2 + 2�2r2
� + 2�3r2

�

)
( )

=

8k2
f
�

�+ ımin
+ 4�1

�+ ımin
||e�

t−N−1||2

+ 4
�+ ımin

(
2�r2

� + c2
)
+ 4

�+ ımin

(
�2r2

� + �3r2
�

)
,

(42)
ngineering 34 (2010) 1662–1670

where �1, �2, and �3 are defined in Appendix C. The error sequence
follows:

||e�
t−N ||2 ≤ 
̄t−N


̄0 = ¯̌ 0


̄t = ¯̨ 
̄t−1 + ¯̌

¯̌ 0 = ˇ0 +
4

�+ ımin

(
�2r2

� + �3r2
�

)
¯̌ = ˇ + 4

�+ ımin

(
�2r2

� + �3r2
�

)
¯̨ = ˛+ 4�1

�+ ımin
.

The proof is complete.

Appendix C. Constants

�1 = kJk2
h
(2k2

f
)
N+1

�2 = kJk2
h

(
2+

(2k2
f
)
N+1 − 1

2k2
f
− 1

)
�3 = kJ.
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